Reloj digital para casa o coche


Este circuito está basado en un proyecto de Arizona Microchip Inc, el inventor y dueño del PIC, al cual sólo se le ha hecho una leve modificación que mas adentrada la nota será explicada. Originariamente fue diseñado como nota de aplicación para explicar la forma de multiplexar displays y teclas con las mismas líneas. Adicionalmente se pretendía explicar el desarrollo de un RTC ó reloj de tiempo real. Para quienes lo deseen (es de recomendar) pueden consultar la nota de aplicación AN590 en la web de Microchip.

Como se aprecia en el circuito el micro genera los dígitos sobre los displays directamente sin el uso de decodificadores como el 9368 y tantos otros. De esta forma, si bien se emplean mas líneas entre el chip y los segmentos, se reduce la cantidad de componentes electrónicos necesarios logrando así reducir el espacio requerido. Dos pulsadores permiten ajustar la hora al momento de conectar el circuito y uno exhibe el segundero sobre los últimos dos displays (los que normalmente muestran los minutos) mientras permanezca presionado. El uso de cada uno es el siguiente. El pulsador A (conectado a Rb1) muestra el segundero en tanto permanezca presionado. El pulsador B (conectado a Rb2) avanza rápidamente los minutos. El pulsador C (conectado a Rb3) avanza rápidamente las horas. Podría agregarse un cuarto pulsador el cual haría las veces de reset (vuelta a cero) que en la mayoría de los relojes de automóvil se encuentra. Incluso en el diseño original de Microchip ese pulsador estaba colocado. De querer hacerlo, bastará con conectar un pulsador entre el terminal MCLR del micro y masa. Nosotros decidimos no colocarlo para simplificar el diseño.

Para hacerlo fácil de entender daremos una explicación rápida de este proyecto. Cada transistor trabaja en corte/saturación, comportándose como una llave electrónica. Cuando recibe tensión en su base deja conducir la corriente de colector a emisor. Entonces el display gobernado por él se iluminará de acuerdo a los pines Rb0 a Rb7 del micro. Según cuales de estas líneas presenten tensión y cuales no será el número que se forme sobre ese indicador. Al hacer conmutar secuencialmente los transistores y a alta velocidad parece, al ojo humano, que todos los displays se iluminasen a la vez. Este mismo efecto es el que aprovecha la TV para mostrar imágenes en movimiento, sólo que en esos aparatos el barrido no es solo horizontal sino que también es vertical. Volviendo a nuestro proyecto. Configurando las líneas Rb1, Rb2 y Rb3 como entradas y desactivando los cuatro transistores se logra censar el  estado de los pulsadores de control. Dado que ningún transistor está en conducción el estado de los pulsadores no afectará a los displays. De todas formas, si se presiona un pulsador mientras se están barriendo los displays el uno lógico generado no alcanza a tener corriente suficiente como para encender los LEDs ya que se encuentra limitado por resistencias de 820 ohms. El relé (cuya bobina es de 12v) controla el encendido de los displays cortando la masa común. Esto se hace para poder hacer un sistema de respaldo que mantenga alimentado el micro por medio de una batería para cuando la alimentación de la red eléctrica falle.

Observando la fuente se comprenderá mejor el funcionamiento de este sistema. Por un lado la corriente alterna de 220v (o la que haya en su red domiciliar) es aislada y reducida en tensión por el transformador, cuyo secundario es de 9V por 300mA. La alterna resultante es rectificada por el puente de diodos y filtrada inicialmente por el capacitor de 2200µF. Entre sus bornes hay 12V aproximados de continua, los cuales se emplean para manejar la bobina del relé. Los dos diodos 1N4004 hacen que, por un lado, la batería no active el relé (evitando que los displays se iluminen sin tensión de red) y, por el otro lado, que la batería no se sobrecargue con la tensión proporcionada por la fuente. El 7805 es un regulador de tensión positivo que estabiliza la tensión en su salida a 5V y los capacitores eliminan el rizado posible.

La importancia de apagar los displays cuando la alimentación principal falla radica en el consumo de estos. Si bien se podrían dejar encendidos, el requerimiento de corriente haría que la batería se agote en un par de desconexiones. En cambio, al permanecer apagados la batería puede mantener funcionando el micro por mas de seis meses sin tensión de red. Si le interesa de todas formas que los displays se iluminen sin tensión de red, quite el relé y puentee los contactos de su llave. Calculamos que el funcionamiento con batería y displays, en forma continua, puede ser de hasta 24 horas, dependiendo del estado de carga de la batería.

A esta altura habrá notado que este circuito es muy fácil de modificar para colocarlo en el auto.

La fuente de arriba se muestra con los cambios necesarios para su uso vehicular. Nótese que ya no se emplea la batería de respaldo dado que no es usual que uno retire la del auto. Lo que no quitaremos es el relé, el cual ahora accionará con el siguiente circuito.

En el esquema el punto ILP representa el interruptor de las luces de posición. No es necesario tomar esta señal del interruptor mismo, puede ser sacada del foquito que ilumina el cenicero o del que ilumina el fondo de las demás teclas. El punto LC es la llave de control general del vehículo (la que se emplea para encender el motor). De esta forma, el reloj siempre funcionará a nivel lógico, pero solo se iluminarán los displays cuando el vehículo esté en funcionamiento (uso) o cuando las luces de posición estén activadas. ¿Por que hacemos esto? Porque de no hacerlo así si estuviésemos estacionados, con el motor detenido y quisiésemos saber la hora tendríamos que dar corriente al sistema eléctrico del motor. De esta forma, tomando tensión para controlar el relé por medio de las luces de posición, bastará con encenderlas para hacer brillar los displays; evitándonos tener que introducir la llave en la ranura. Un pequeño lujo de auto caro, que solo nos costará los pocos centavos que vale un diodo y un trozo de cable.

Notas de Armado:

Para tener éxito en el armado de este proyecto hay pocos requisitos, pero los hay.

  1. En los displays todos los segmentos están unidos entre si. Esto quiere decir que el segmento A del display izquierdo está conectado con el A del que le sigue y así hasta el último.

  2. El punto decimal sólo está conectado al display de las horas (el segundo de izquierda a derecha). Esto hace que horas y minutos disten entre sí por un punto.

  3. No es mala práctica (aunque no fue implementado en nuestro esquema) colocar un capacitor cerámico de 100nF entre la alimentación del micro y masa, lo mas cercano posible a éste.

  4. Dado que el montaje demanda pocos componentes el uso de dos placas de circuito impreso no es recomendado.

  5. Si es recomendado colocar componentes de montaje superficial (SMD) sobre circuito impreso de dos caras. Colocando de una cara los displays y pulsadores y de la otra el micro y los componentes adicionales. De esta forma el prototipo quedará reducido a su tamaño mínimo.

Otro tema que merece atención es la estética de los displays. Colocando cuatro seguidos (uno pegado al otro) la hora es leída, pero con cierta dificultad.

Observe ahora como se ve separando las horas de los minutos y colocando dos LEDs cuadrados adicionales.

Es la misma hora, pero se aprecia mejor y estéticamente es mas agradable. No requiere grandes esfuerzos, mas que separar un poco los displays de hora y diez minutos y colocar dos diodos LED cuadrados que irán conectados al terminal DP del display horas y a su transistor. Si desea que dichos LEDs permanezcan fijos deberá colocarlos entre 5v y masa de los transistores por medio de una resistencia de 200 ohms. Cabe aclarar que los diodos LED deben ir en serie

El Software:

Para que este reloj funcione el micro debe ser cargado con el programa a ejecutar. De otra forma el sistema será completamente inútil. Puede bajarse las versiones en Assembler (código del programa) o en Hexadecimal (listo para subir al micro).